3.191 \(\int \frac{\tan ^{\frac{3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=194 \[ \frac{(13 A-37 i B) \sqrt{\tan (c+d x)}}{60 a^2 d \sqrt{a+i a \tan (c+d x)}}-\frac{\left (\frac{1}{8}-\frac{i}{8}\right ) (A-i B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{a^{5/2} d}+\frac{(-B+i A) \tan ^{\frac{3}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac{(A+11 i B) \sqrt{\tan (c+d x)}}{30 a d (a+i a \tan (c+d x))^{3/2}} \]

[Out]

((-1/8 + I/8)*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(a^(5/2)*d)
+ ((I*A - B)*Tan[c + d*x]^(3/2))/(5*d*(a + I*a*Tan[c + d*x])^(5/2)) + ((A + (11*I)*B)*Sqrt[Tan[c + d*x]])/(30*
a*d*(a + I*a*Tan[c + d*x])^(3/2)) + ((13*A - (37*I)*B)*Sqrt[Tan[c + d*x]])/(60*a^2*d*Sqrt[a + I*a*Tan[c + d*x]
])

________________________________________________________________________________________

Rubi [A]  time = 0.599792, antiderivative size = 194, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.132, Rules used = {3595, 3596, 12, 3544, 205} \[ \frac{(13 A-37 i B) \sqrt{\tan (c+d x)}}{60 a^2 d \sqrt{a+i a \tan (c+d x)}}-\frac{\left (\frac{1}{8}-\frac{i}{8}\right ) (A-i B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{a^{5/2} d}+\frac{(-B+i A) \tan ^{\frac{3}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac{(A+11 i B) \sqrt{\tan (c+d x)}}{30 a d (a+i a \tan (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Tan[c + d*x]^(3/2)*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

((-1/8 + I/8)*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(a^(5/2)*d)
+ ((I*A - B)*Tan[c + d*x]^(3/2))/(5*d*(a + I*a*Tan[c + d*x])^(5/2)) + ((A + (11*I)*B)*Sqrt[Tan[c + d*x]])/(30*
a*d*(a + I*a*Tan[c + d*x])^(3/2)) + ((13*A - (37*I)*B)*Sqrt[Tan[c + d*x]])/(60*a^2*d*Sqrt[a + I*a*Tan[c + d*x]
])

Rule 3595

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((A*b - a*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n)/(2*a*f*
m), x] + Dist[1/(2*a^2*m), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[A*(a*c*m + b*d*n
) - B*(b*c*m + a*d*n) - d*(b*B*(m - n) - a*A*(m + n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A,
B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] && GtQ[n, 0]

Rule 3596

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*A + b*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(2
*f*m*(b*c - a*d)), x] + Dist[1/(2*a*m*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Si
mp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m - b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x
] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] &&  !GtQ[n,
0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\tan ^{\frac{3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{5/2}} \, dx &=\frac{(i A-B) \tan ^{\frac{3}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}-\frac{\int \frac{\sqrt{\tan (c+d x)} \left (\frac{3}{2} a (i A-B)-a (A-4 i B) \tan (c+d x)\right )}{(a+i a \tan (c+d x))^{3/2}} \, dx}{5 a^2}\\ &=\frac{(i A-B) \tan ^{\frac{3}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac{(A+11 i B) \sqrt{\tan (c+d x)}}{30 a d (a+i a \tan (c+d x))^{3/2}}+\frac{\int \frac{-\frac{1}{4} a^2 (A+11 i B)-\frac{1}{2} a^2 (7 i A+13 B) \tan (c+d x)}{\sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}} \, dx}{15 a^4}\\ &=\frac{(i A-B) \tan ^{\frac{3}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac{(A+11 i B) \sqrt{\tan (c+d x)}}{30 a d (a+i a \tan (c+d x))^{3/2}}+\frac{(13 A-37 i B) \sqrt{\tan (c+d x)}}{60 a^2 d \sqrt{a+i a \tan (c+d x)}}+\frac{\int -\frac{15 a^3 (A-i B) \sqrt{a+i a \tan (c+d x)}}{8 \sqrt{\tan (c+d x)}} \, dx}{15 a^6}\\ &=\frac{(i A-B) \tan ^{\frac{3}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac{(A+11 i B) \sqrt{\tan (c+d x)}}{30 a d (a+i a \tan (c+d x))^{3/2}}+\frac{(13 A-37 i B) \sqrt{\tan (c+d x)}}{60 a^2 d \sqrt{a+i a \tan (c+d x)}}-\frac{(A-i B) \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx}{8 a^3}\\ &=\frac{(i A-B) \tan ^{\frac{3}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac{(A+11 i B) \sqrt{\tan (c+d x)}}{30 a d (a+i a \tan (c+d x))^{3/2}}+\frac{(13 A-37 i B) \sqrt{\tan (c+d x)}}{60 a^2 d \sqrt{a+i a \tan (c+d x)}}+\frac{(i A+B) \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{4 a d}\\ &=\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) (i A+B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{a^{5/2} d}+\frac{(i A-B) \tan ^{\frac{3}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac{(A+11 i B) \sqrt{\tan (c+d x)}}{30 a d (a+i a \tan (c+d x))^{3/2}}+\frac{(13 A-37 i B) \sqrt{\tan (c+d x)}}{60 a^2 d \sqrt{a+i a \tan (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 6.97963, size = 214, normalized size = 1.1 \[ \frac{e^{-3 i (c+d x)} \sec ^3(c+d x) \left (\left (-1+e^{2 i (c+d x)}\right ) \left (i A \left (e^{2 i (c+d x)}+17 e^{4 i (c+d x)}-3\right )+B \left (-11 e^{2 i (c+d x)}+23 e^{4 i (c+d x)}+3\right )\right )-15 i (A-i B) e^{5 i (c+d x)} \sqrt{-1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\frac{e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )\right )}{120 a^2 d \sqrt{\tan (c+d x)} (\tan (c+d x)-i)^2 \sqrt{a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Tan[c + d*x]^(3/2)*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

(((-1 + E^((2*I)*(c + d*x)))*(I*A*(-3 + E^((2*I)*(c + d*x)) + 17*E^((4*I)*(c + d*x))) + B*(3 - 11*E^((2*I)*(c
+ d*x)) + 23*E^((4*I)*(c + d*x)))) - (15*I)*(A - I*B)*E^((5*I)*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))]*ArcTa
nh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]])*Sec[c + d*x]^3)/(120*a^2*d*E^((3*I)*(c + d*x))*Sqrt[Tan[c
+ d*x]]*(-I + Tan[c + d*x])^2*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.062, size = 1096, normalized size = 5.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(5/2),x)

[Out]

1/240/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)/a^3*(308*I*B*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^
(1/2)*tan(d*x+c)^2-148*B*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^3+15*I*A*2^(1/2)*ln(-(-
2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)^4*
a+15*B*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x
+c)+I))*tan(d*x+c)^4*a-212*A*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2+60*I*B*2^(1/2)*ln
(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c
)*a+220*I*A*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)+60*A*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^
(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)^3*a-90*I*A*2^(1/2)*
ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x
+c)^2*a+15*I*A*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/
(tan(d*x+c)+I))*a-90*B*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(
d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)^2*a-52*I*A*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)^3-
60*I*B*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x
+c)+I))*tan(d*x+c)^3*a-60*A*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a
*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)*a-60*I*B*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+15*B*2^(1/
2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a+22
0*B*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)+60*A*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(
-I*a)^(1/2))/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(-tan(d*x+c)+I)^4/(-I*a)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [B]  time = 2.13225, size = 1368, normalized size = 7.05 \begin{align*} -\frac{{\left (15 \, \sqrt{\frac{1}{2}} a^{3} d \sqrt{\frac{-i \, A^{2} - 2 \, A B + i \, B^{2}}{a^{5} d^{2}}} e^{\left (6 i \, d x + 6 i \, c\right )} \log \left (\frac{{\left (2 i \, \sqrt{\frac{1}{2}} a^{3} d \sqrt{\frac{-i \, A^{2} - 2 \, A B + i \, B^{2}}{a^{5} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{2}{\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + i \, A + B\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 i \, A + 4 \, B}\right ) - 15 \, \sqrt{\frac{1}{2}} a^{3} d \sqrt{\frac{-i \, A^{2} - 2 \, A B + i \, B^{2}}{a^{5} d^{2}}} e^{\left (6 i \, d x + 6 i \, c\right )} \log \left (\frac{{\left (-2 i \, \sqrt{\frac{1}{2}} a^{3} d \sqrt{\frac{-i \, A^{2} - 2 \, A B + i \, B^{2}}{a^{5} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{2}{\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + i \, A + B\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 i \, A + 4 \, B}\right ) - \sqrt{2}{\left ({\left (17 \, A - 23 i \, B\right )} e^{\left (6 i \, d x + 6 i \, c\right )} + 6 \,{\left (3 \, A - 2 i \, B\right )} e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \,{\left (A - 4 i \, B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} - 3 \, A - 3 i \, B\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-6 i \, d x - 6 i \, c\right )}}{120 \, a^{3} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

-1/120*(15*sqrt(1/2)*a^3*d*sqrt((-I*A^2 - 2*A*B + I*B^2)/(a^5*d^2))*e^(6*I*d*x + 6*I*c)*log((2*I*sqrt(1/2)*a^3
*d*sqrt((-I*A^2 - 2*A*B + I*B^2)/(a^5*d^2))*e^(2*I*d*x + 2*I*c) + sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) + I*A
 + B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x
+ I*c))*e^(-I*d*x - I*c)/(4*I*A + 4*B)) - 15*sqrt(1/2)*a^3*d*sqrt((-I*A^2 - 2*A*B + I*B^2)/(a^5*d^2))*e^(6*I*d
*x + 6*I*c)*log((-2*I*sqrt(1/2)*a^3*d*sqrt((-I*A^2 - 2*A*B + I*B^2)/(a^5*d^2))*e^(2*I*d*x + 2*I*c) + sqrt(2)*(
(I*A + B)*e^(2*I*d*x + 2*I*c) + I*A + B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(
e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/(4*I*A + 4*B)) - sqrt(2)*((17*A - 23*I*B)*e^(6*I*d
*x + 6*I*c) + 6*(3*A - 2*I*B)*e^(4*I*d*x + 4*I*c) - 2*(A - 4*I*B)*e^(2*I*d*x + 2*I*c) - 3*A - 3*I*B)*sqrt(a/(e
^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c))*e^(-6*I
*d*x - 6*I*c)/(a^3*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

Exception raised: TypeError